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ABSTRACT

We present an improved and efficient numerical method to determine the optical properties of nanostructures
starting from the electronic properties. We study the variation of electronic and optical properties induced by
confinement effects in semiconductors quantum objects. We solve the time-independent Schrodinger equation
with a new formulation of a shooting method under the effective mass approximation. This formulation is adapted
to quantum wells, circular cross-section quantum wires and spherical quantum dots. We applied a correction
on the mass to take into account the nonparabolicity of the band structure. The correction gives an accuracy
comparable to more demanding calculation methods such as 8-bands k-p, tight binding or even semi-empirical
pseudopotential methods. Our results remain valid even for low-bandgap materials and sizes as small as 1 nm.
The calculation speed of our method allows optimization procedures that give better understanding of experi-
mental results concerning CdS, CdSe, PbS and PbSe spherical quantum dots. We consider extensive data from
the literature. We focus on the relations between the electronic structure and absorption and photoluminescence
spectra measured on spin-coated PMMA thin-films containing (core)shell nanoparticles.

Keywords: quantum structures, EMA, nonparabolicity, CdSe, PbSe, coupled quantum wells, absorption, di-
electric dipole approximation

1. INTRODUCTION

Changing the size, shape or composition of materials vary their electronic properties. The confinement effects in
low-dimensional structures also change optical and electrical behaviors. The unique properties of nanostructured
semiconductor materials have led to considerable interests from the optoelectronic community. In addition,
recent progress in experimental formulation and numerical modeling have led to a growth of their use in various
applications.’

Numerical studies give useful insights into the physical phenomena without delays or costs so that the
association and sizing of materials can be optimized to design efficient devices, such as photovoltaic solar cells.?
The optimization routines impose the numerical calculations to be fast and accurate. Speed and accuracy
depend on the numerical method employed. Fast techniques often lack accuracy and exact ones demand too
much computer resources.

The optical and electrical properties derive from the electronic ones,' so a precise evaluation of the confined

energy levels is crucial. They are numerous models to study the size dependence of the energy levels due to
spatial confinement.® The most simple ones derive from the particle-in-a-box (PIB) model.* Such methods like
the effective mass approximation (EMA)® or quantum transfer matrix methods® are fast and give the general
deviation from the bulk theory. They are generally valid for structures ranging from tenth of nanometers to
several micrometers which is the size of electronics components. More precise models that take band mixing into
account such as multi-bands k-p” or tight-binding (TB)® methods allow a more precise evaluation of the properties
in the range of a few Angstroms to hundreds of nanometers. Exact atomistic and ab-initio calculations such as
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pseudopotential methods? and density functional theories (DFT)!? are limited to the study of a few thousands
atoms by hardware and computation time.

We adopt a rapid approach with the EMA that we solve using a shooting technique.!! Speed, accuracy and
stability are increased by developing the Schroédinger equation into a set of coupled differential equations that
have less floating point operations.'? Furthermore the usability is increased by a general formulation that can
be applied to nanostructures of all dimensionality. We apply a correction on the effective mass with an energy
dependence. The accuracy of the approach fit well with experimental data and more demanding methods such
as 8x8 k-p, TB or SEPM.

In this study we present our method to calculate the energy levels of various nanostructures. We introduce
some phenomenological aspects behind the nonparabolicity of the band structure to explain the sources of inac-
curacies and the limits of the approach. We then study the limits of the current approach by confronting it to
published results of the bandgaps of high- (CdS and CdSe) and low- (PbS and PbSe) bandgap semiconductor
nanoparticles. The improvement given by the correction is demonstrated for an example of InGaAs/AlGaAs cou-
pled quantum wells. We also give comparison between calculated electronic properties and measured absorption
and photoluminescence of (CdSe)CdS colloidal quantum dots in PMMA matrix on glass substrate. We conclude
on the perspective of extracting the effective permittivity of the films and of the quantum dots, the potential
applications and the remaining points of improvement of the model.

2. DETERMINATION OF THE ELECTRONIC PROPERTIES

We consider a single charge in a steady state system. For speed consideration we have considered the effective
mass approximation that contains the electrostatic interactions between the charges directly into the mass.

The EMA derive from the analytic dispersion relation for a free electron gas.* This PIB model approximates
the band-structure around the gap to a parabola from which the curvature radius will condition the effective
mass and energy level dispersion. The curvature at the extrema of this parabolic dispersion curve is expressed
in the second derivative. A large curvature implies a large second derivative or a small radius of curvature that
will lead to a small effective mass and vice-versa.

Actual band-structures show that the approximation by a parabolic shape is only valid for energies near the
bands edge. The nonparabolicity of the bands is the main limit of the effective mass approximation and the main
source of errors. It limits the resolution of the high-energies levels that are increasingly inaccurate the further
away they are from the band edge. That is the reason why it is difficult to resolve the properties of low-bandgap
materials under the EMA.'3 It is due to the domain of validity of the parabolic assumption that will be small
in comparison to the actual band structure. Furthermore, the confinement effect that increases the energy level
separation will lead to another limit of resolution for small sizes. We correct this problem by an effective mass
that increases accordingly with the energy.

The correction'! applies a parabolic increase to the effective mass that is conditioned by the energy difference
from the band edge normalized by the amplitude of the bandgap to scale the effect. Thus each mass assigned to
a position r in the structure will be corrected according to:

()

m*(r, E) = m*(r) (1)

where V(r) is the potential applied on the position. It should be noted that E,(r) increases also with the
confinement. In our approach we use the bulk values only to calculate the first levels because they present the
smallest deviations due to nonparabolicity. We then reuse the calculated values to determine the size-dependent
gap to apply the nonparabolicity correction to higher levels.

We show an example of the nonparabolicity effect and the improvement given by the correction through the
study of the conduction band of Gag 47Ing 53As quantum wells in Alg 48Ing 50As barriers by comparing our results
with those of Sirtori et al.'* We have found that the results of our calculations are in perfect agreement with
their experimental values with a maximum difference of 2 meV and that the nonparabolicity correction cannot
be neglected under the effective mass approximation when considering energies that are of order or higher than
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Figure 1. FIG. 3. Confined energy levels in the conduction band of the single-well and triple-well InGaAs/AlGaAs
structures from Sirtori et al.'* The thick blue lines are the results of our calculations, the thin grey lines are the results
without the nonparabolicity correction. The Fermi level is also reported.

of the half-height of the confining potential. We emphasize that, with the correction, we retrieve the 8-bands k-p
results of Sirtori and al. with a precision under 1 meV for a spatial resolution of dr = 0.01 nm.

We now present the numerical method to resolve the energies. The most common approach to solve the time-
independent Schrédinger equation is to use finite difference and to calculate the eigenvalues and eigenfunctions
of a tridiagonal matrix.!'®> A faster technique,'® although less employed in the semiconductor community, when
using finite difference is the shooting technique.'”

We use a shooting method implemented from Harrison’s book.!! We further improved the speed and stability
by reformulating the shooting equation in a set of two coupled ones'? that have less floating point operations.
We formulated them so that it can be applied to both 2D, 1D and 0D quantum structures in a single formula
(submitted for publication in Applied Physics Letters). The position is represented in scalar, cylindrical and
spherical coordinates for quantum wells, wires and dots respectively. We solve for E the following coupled
shooting equations:

wn,l(r + d’l") = %&g%in,l(r) + wn,l(r) (2)
Gl +dr) = 28 (V(r) + BUENZD — B) i) + a(r) (3)

The boundary conditions resulting from the continuity at interfaces condition are 1, ;(£00) = 0 and 9, ;(£o00)/0r =
0. N = 3— X is the dimensionality of an XD quantum structure (X = 0, 1 or 2), r is the position in m expressed

in the correct coordinate system and 1, ; is the radial part of the envelope of the wavefunction. We start the
calculation at one end of the structures with the two first points of the shooting procedure equal to 1, ;(0) =0
and 1;”71(0) =1.

In 1D and 0D structures we should to start the evaluation of the energy levels from the middle of the structures
with 1, ;(0) = 1 and 1[),171(0) = 1 as starting values. But to allow the study of laterally coupled structures and
to have common starting values for all dimensions we used the fact that, as the EMA derives from the PIB
model, AE depends linearly on S/D?, the inverse of the square diameter or length.'® The slopes S are 1.0,'°
1.17%0 and 2.0?! for wells, wires and dots respectively. We verified that we retrieve the same results between the
calculations starting from the middle of the structure and the ones starting at one end for which we multiplied
the corresponding energy by the appropriate slope. The calculation of coupled 1D and 0D quantum structures
is only valid if running along the axis that goes to all the centers of symmetry.

The implementation of this method is straightforward. It allows the quick evaluation of electronic properties of
most nanostructures and should be of interest to many scientific studies covering a wide spectrum of applications.
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All our code is written in Python except for the core equations that are implemented in Cython for speed. The
wavefunction envelopes calculated with this method have to be normalized according to ¢(r) — ¢(r)/+/ [ ¥2(r)dr

to be quantitatively compared in models like the electrostatic dipole approximation that serves to determine
optical properties of nanostructures.

To study the capability of our approach we study the size-confinement of the bandgap for colloidal quantum
dots that present the highest confinement. We model the quantum dots with finite potential as nanospheres of
a certain dimension comprise between vacuum domains of same sizes. We fixed the band offsets between the
materials and the vacuum. This allows the results to become more independent of the matrix and therefore
allows the comparison of data from different sources. We use the values of the electronic affinity x4 as band
offset in the conduction band. In the valence band, we use x4 + F,. This allows the method to be more accurate
and to compare the calculation with arbitrary absorption data. The Brus equation?! corrects the PIB model of
spherical geometries through a screening term that describes electrostatic forces. It is often reported as a first
approximation in publications concerning quantum dots because it extends the validity range of the PIB model
while keeping the speed of resolution and retaining the simplicity. Kayanuma further improved this formulation
by accounting spatial correlation between the charges with the effective Rydberg energy.??

We corroborated our results with exhaustive bandgaps data from the literature and found excellent agreement
between experimental results and more accurate methods that take band mixing into account and therefore are
not subject to the nonparabolicity limitation. In figure 2 we present the results of our calculation for CdSe and
PbS QDs with (solid line) and without (dashed line) the correction. We see that, as expected, in both cases the
Brus equation diverges when the confinement is to strong, that is, for small sizes and low-bandgap. We obtain
excellent agreement with experimental data and more precise but more demanding methods.

This approach has been validated through the study of the bandgaps of quantum dots of various semiconduc-
tors. We fit the absorption data with a sizing curve of the form E,(D) = E;+1/(aD?+bD +c). The comparison
of our results with the fit allows us to estimate the accuracy of our method in comparison with other parameters
such as bulk bandgaps and sizes. The figure 3 presents the deviation in eV between of our results with the
correction and the sizing curve for the semiconductors of this study. We consider 100 sizes ranging from 0.5 nm
to 20 nm. This test depends heavily on the quality of the fit, the more there are data points better is the fit. We
can see that the results for CdS present the higher deviation, this is due to the lack of data points that give an
inaccurate fit. Nonetheless we find that the mean deviation under 100 meV is around 15 meV, that corresponds
to a shift of & 5 nm when comparing to experimental spectra from optical measurements. Also this is a fit
on data from different sources that where in different matrices, caped with different ligands,... That changes
the electronic affinity, the confinement potential and thus the energy levels that are calculated. Comparisons
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Figure 2. Calculation of the bandgap variation of high- and low-bandgap CdSe and PbS nanospheres. Comparison with
experimental data and semi-empirical pseudopotential (SEPM) and tight-binding (TB) calculations from the literature.
Results with Brus equation are also shown.
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Figure 3. Test of the capability of the method to determine the confined bandgap of different semiconductors.

with experimental samples need a more careful study on those aspects. We also observe the deterioration of the
resolution for decreasingly low-bandgap materials.

3. QUANTUM DOTS IN PMMA THIN-FILMS

To study the optical properties of quantum dots (QDs) we realized thin-films of (core)shell (CdSe)ZnS, (CdSe)CdS
structures and PbS nanoparticles. We choose a PMMA matrix because of its ease of use and its transparency
in the visible spectrum. The (CdSe)ZnS dots are of seven sizes ranging from 2.5 to 6.7 £ 0.5 nm core diameters
with shells of 0.6 £ 0.1 nm. They were bought from Plasmachem. The (CdSe)CdS and PbS nanospheres were
synthesized by the cole suprieure de physique et de chimie industrielle (ESPCI) in Paris. We dispersed the dots
in chloroform and mixed it with PMMA in solution with a 10% concentration in mass. We then made the films
by spin-coating.?> We optimized deposition time and rotation speed to have the most uniform layer. We found
that optimum results when performing optical measurement were obtained for films deposited at 2000-2500 rpm
for 20 sec. We further flattened the samples surfaces by annealing in oven at 120°C for 15 minutes.

We evaluated the thicknesses by measuring step-differences with an optical profilometer and found that
the layers that we made have a thickness of around 1 micron. We obtained the absorption, transmission and
reflectance of our samples with an integrating sphere in the visible. We also used a spectrophotometer to
obtain absorption spectra with better resolution and measured room-temperature photoluminescence to study
the resulting spectra. We currently started ellipsometry measurements to extract the refractive index.

The figure 4 presents absorption and photoluminescence spectra of the (CdSe)CdS QDs. The positions of the
peaks that are the electronic transitions are extracted using the first derivative to compare with our numerical
results. The mean diameter of the CdSe core estimated from the TEM images reported on the figure is 5.3 nm
with a CdS shell of around 0.5 nm.

4. OPTICAL PROPERTIES: DIELECTRIC DIPOLE APPROXIMATION

Once we have the energy levels we perform carriers statistics evaluation. We determine the intrinsic charge
density of each band. We calculate the Fermi energy Er and levels population N; at OK. For other temperatures
we integrate the Fermi-Dirac distribution and resolve the populations. This allows us to discriminate the empty
levels. To extract the material properties we consider the transitions between levels as dielectric oscillators.
Under the dielectric dipole approximation, the oscillator strength of a transition from a level i to a level j reads

2m*
fij = ?AEMMUP, (4)
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Figure 4. Absorption and photoluminescence spectra of (core)shell (CdSe)CdS quantum dots. Peak positions are deter-
mined from the first derivative. Sizes are determined from the TEM pictures (ESPCI measurements).

where the energetic difference AE}; gives the spectral position of the transition, that is, the position of a peak on
absorption or photoluminescence spectra. M;; is the dipole matrix element corresponding to the overlap integral
of the wavefunctions. It gives the amplitude of the transition. Attention have to be paid to the fact that this
formulation is not adapted to heterostructures because the mass m* does not reflect the distribution probability
of the charge in the structure. We calculate the effective mass specific to each level by normalizing it to the
shape of the wavefunction:2 -

Now that we have the electronic properties and transitions characteristics we simulate the absorption starting
from the Fermi golden rule. The absorption coefficient for a particular transition i — j reads:2°

167‘(‘ BFSANgz
\Er ‘/conf
Brs is the fine-structure constant, ANj; is the population difference between the levels, ¢, is the relative permit-

tivity and Veons is the confinement volume that is occupied by the wavefunctions. The function d(AE;; — hw)
represents the absorption peak under the form of a Lorentzian of arbitrary width T fixed to 10 meV.

aj(hw) = hw | Mij[Pd(AE;; — hw) (6)

AT
hw — AE;)? + (hI‘)2]

d(AE; — hw) = & { : (7)

The sum of the absorptions of all the transitions give the simulated spectrum. The main broadening mechanism in
the optical properties of solution-processed quantum dots is the size dispersion. We can model it by a log-normed
function h(d,dy,o)?% that we multiply with d

h(da d070) =

1 11 o {
1 e l—
V2rdlno P73 In?o

Proc. of SPIE Vol. 9161 916102-6

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/20/2015 Terms of Use: http://spiedl.org/terms



d and dy are particle and mean diameters respectively and o is the standard deviation of the distribution. This
equation can either serve to model or fit an experimental distribution.

To describe photoluminescence (PL) one must know the exciton binding energy that represents the separation
between the firsts absorption and PL peaks, often called Stocke shift. We use a formulation developed by Hanken
in 1956

262 Te Th
By = / G (ra)rndr, / UR . (re)r2dre (9)
0 0

4me,€q

The photoluminescence can then be evaluated in the same manner than presented here for absorption?® using
the transitions that are related to the exciton, donor and acceptor levels.

Another important property that appears throughout this section is the dielectric permittivity that changes
with confinement due to the shifts of the energy levels. A first approximation of the size dependence of the
permittivity, originally developed by Hanken, readapted later reads:

11 [1 B 1] [1 _exp(=d/p.) +exp(—d/Ph)] pen = <h>1/2 (10)

e(d)  €xo € €0 2 2m? wro

We can then use this correction to estimate the overall permittivity?”
) =l + i3S &
—w? —iyw

5. CONCLUSION

The EMA method presented in this paper can be applied to quantum wells, wires and dots structures. Our
formulation is simple yet accurate, easy to implement and performs in few microseconds on a particular structure.
We highlighted the limiting cases of narrow bandgap materials or energies that are far away from the bands edges
that we explained with phenomenological considerations. Those limitations have been corrected by transforming
the effective mass to be energy-dependent in order to account the nonparabolicity of the band structure. We
provide examples of bandgap calculations obtained with our approach that compare well with published work
on CdS, CdSe, PbS and PbSe quantum dots. We have considered only a few examples but the method gives
accurate results on a wide range of materials given the appropriate input parameters. The rapidity of our method
allows to experiment with physical parameters when comparing to experimental results in order to deepen our
understanding of the samples and the physical phenomena in place. The methodology to calculate the absorption
spectra and the permittivity from the electronic properties is presented. Further work about the determination
of electronic and optical properties of quantum dot materials solar cells using our technique will be carried out.
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