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ABSTRACT 

We propose a SnOx | Ag | SnOx multilayer, deposited in a continuous vacuum atmosphere by E-beam evaporation, as 
transparent anode for a (poly-3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) bulk 
heterojunction based Organic Solar Cell (OSC). Optical characterization of the deposited SnOx is performed to determine 
the dispersion of the complex refractive index. A Transfer Matrix Method (TMM) numerical optimization of the 
thicknesses of each layer of the electrode is realized to limit the number of manufactured samples. A numerical study 
using the morphology of the silver inserted between the oxide layers as input data is performed with a Finite Difference 
Time Domain (FDTD) method to improve the accordance between measurement and optical model. Multilayers are 
manufactured with the objective to give to the electrode its best conductivity and transparency in the visible spectral 
range by using the results of the optical optimization. These bare tri-layer electrodes show low sheet resistance (<10 
Ω/□) and mean transparency on [400-700] nm spectral band as high as 67 % for the whole Glass | SnOx | Ag | SnOx 
structure. The trilayer is then numerically studied inside a P3HT:PCBM bulk heterojunction based OSC structure. 
Intrinsic absorption inside the sole active layer is calculated giving the possibility to perform optical optimization on the 
intrinsic absorption efficiency inside the active area by considering the media embedding the electrodes. 

Keywords: free-ITO electrode, oxide/metal/oxide, organic solar cell, optical optimization, TMM calculation, FDTD 
calculation, SnOx, refractive index, thin silver layer. 

 

1. INTRODUCTION 
 

The sun gives us a massive renewable source of energy that can be collected in several ways. One of them is to convert 
the photons of the solar spectrum into electricity via a photovoltaic (PV) device. The possibilities of materials and 
structures to achieve such device are vast and until the last two decades were dominated by silicon and thin-film 
technologies. The production price and energy’s cost of the crystalline silicon modules is currently high. Emerging PV 
devices as Organic Solar Cells (OSC) have the advantage of low manufacturing cost, high absorption coefficient and 
mechanical flexibility. Nevertheless, a weak absorption spectral band is associated to these alternative materials. 
Moreover, Indium Tin Oxide (ITO) is the most used transparent electrode for OSC, but Indium is highly employed and 
could become rare and expensive. Alternative to ITO is a substantial research field1. One possibility are the multilayer 
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